Analysis of the Enright-Kamel Partitioning Method for Stiff Ordinary Differential Equations
نویسنده
چکیده
The use of implicit formulae in the solution of stiff ODEs gives rise to systems of nonlinear equations which are usually solved iteratively by a modified Newton scheme. The linear algebra costs associated with such schemes may form a substantial part of the overall cost of the solution. The work of W. H. Enright and M. S. Kamel attempts to reduce the cost of the iteration by automatically transforming and partitioning the system. We provide new theoretical justification for this method in the case where the stiff eigenvalues of the Jacobian matrix used in the modified Newton iteration are small in number and well separated from the other eigenvalues. The theory of Y. Saad is introduced and adapted to show that the method uses the projection of the Jacobian onto a Krylov subspace which virtually contains the dominant subspace. This is shown to have favourable consequences. Numerical evidence is provided to support the theory.
منابع مشابه
Optimization of solution stiff differential equations using MHAM and RSK methods
In this paper, a nonlinear stiff differential equation is solved by using the Rosenbrock iterative method, modified homotpy analysis method and power series method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relations. Some numerical examples are studied to demonstrate the accuracy of the presented meth...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملOn solving ordinary differential equations of the first order by updating the Lagrange multiplier in variational iteration method
In this paper, we have proposed a new iterative method for finding the solution of ordinary differential equations of the first order. In this method we have extended the idea of variational iteration method by changing the general Lagrange multiplier which is defined in the context of the variational iteration method.This causes the convergent rate of the method increased compared with the var...
متن کاملDifferential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell
In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...
متن کاملConvergence, Consistency and Stability in Fuzzy Differential Equations
In this paper, we consider First-order fuzzy differential equations with initial value conditions. The convergence, consistency and stability of difference method for approximating the solution of fuzzy differential equations involving generalized H-differentiability, are studied. Then the local truncation error is defined and sufficient conditions for convergence, consistency and stability of ...
متن کامل